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Abstract 

An expression is derived for the intensity diffracted by a 
non-crystalline fiber made up of aggregates of helical 
molecules. This expression is useful for the efficient 
calculation of diffraction from such specimens and 
provides insight into the effects of aggregation on 
diffraction patterns. Example calculations show a number 
of implications for structure determination. 

I. Introduction 

X-ray fiber diffraction is used to determine the structures 
of polymers and other macromolecules that exist 
naturally as, or can be prepared as, oriented fibers or 
planar arrays (Millane, 1988). The molecules themselves 
usually adopt helical structures. In some specimens, the 
molecules are merely oriented with their long axes 
approximately parallel and are randomly rotated about 
these axes (Namba & Stubbs, 1985; Bhattacharjee, 
Glucksman & Makowski, 1992). In others, the molecules 
further organize laterally into very small crystalline 
regions and the orientations of the crystallites about the 
long axes of the constituent molecules are random 
(Leslie, Amott, Chandrasekaran & Ratliff, 1980). These 
are referred to as non-crystalline and polycrystalline 
specimens, respectively. Specimens exhibiting ordering 
intermediate between these two extremes also exist 
(Millane & Stroud, 1991). Structure determination 
involves calculation of the intensity diffracted by the 
specimen and, in the case of a non-crystalline fiber, this 
is equal to the cylindrical average of the intensity of the 
Fourier transform of one molecule. 

Other cases occur, however, where two or more helical 
molecules aggregate in a specific manner to form the 
fundamental particles that are randomly rotated in a fiber 
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specimen. The intensity diffracted by the specimen is 
then related to the Fourier transform of the aggregate 
structure, which sometimes can be a computationally 
intensive calculation. The objective of this paper is to 
derive an expression for the intensity diffracted by such a 
specimen, in terms of the Fourier transform of a single 
molecule and the geometric relationships between the 
molecules. This provides a substantial decrease in the 
amount of computation required, compared to a calcula- 
tion directly from the aggregate structure, and provides 
insight into differences in the diffraction by independent 
and by aggregated molecules. 

There are a number of macromolecular systems that 
exhibit this kind of aggregation, for which these results 
might be useful, and some examples where X-ray fiber 
diffraction has been used to derive structural information 
are as follows. Nucleic acids form double- and triple- 
stranded molecules that are made up of two or three 
(almost) identical strands (Leslie, Amott, Chandrase- 
karan & Ratliff, 1980; Park, Arnott, Chandrasekaran, 
Millane & Campagnari, 1987), and polysaccharides such 
as carrageenans and gellan form double helices (Millane, 
Chandrasekaran, Arnott & Dea, 1988; Chandrasekaran, 
Millane, Arnott & Atkins, 1988). Aggregates of poly- 
saccharide helices formed by lateral associations have 
also been considered (Paoletti, Cesaro & Delben, 1983). 
Collagen triple helices have a high potential for lateral 
interactions and form a variety of microfibrillar and 
fibrillar aggregates (Fraser, MacRae & Miller, 1987; 
van der Rest & Garrone, 1991; Kajava, 1991). The 
deoxygenated form of sickle-cell hemoglobin molecules 
polymerize into long strands, and these form dimers by 
side-by-side association, followed by alignment and 
lateral aggregation of the dimers to form fibers and 
macrofibers with specific lateral interactions (Magdoff- 
Fairchild & Chiu, 1979; Potel, Wellems, Vassar, Deer & 
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Josephs, 1984). Fibrinogen molecules form two-stranded 
protofibrils via specific lateral interactions, which then 
aggregate laterally to form fibers (Voter, Lucaveche, 
Blaurock & Erickson, 1986). 

A general expression for the intensity diffracted by a 
non-crystalline fiber in which the scattering units are 
made up of a number of identical parallel (or antiparallel) 
helical molecules is derived, and its computational 
complexity is assessed. Example calculations using these 
expressions illustrate the effects of aggregation on 
diffraction patterns and on the apparent symmetry of 
the molecules that is inferred from the distribution of 
diffraction on the meridian of diffraction patterns. 

2. Preliminaries 

Consider a helical molecule with repeat distance c and 
helix symmetry uv, i.e. there are u (helix) repeat units in v 
turns of the helix (one c repeat). The complex amplitude 
Ft(R, if~) diffracted by such a molecule is given by 

Ft(R, ~/) = ~ G,, t(R)exp[in(~ + ~r/2)], (1) 
n 

where (R, ~, Z = l/c) are cylindrical polar coordinates in 
reciprocal space, 1 is an integer, and the sum is over all 
integers n that satisfy the helix selection rule (Cochran, 
Crick & Vand, 1952) 

1 = up + vn, (2) 

where p is any integer. The G,,t(R) are the com- 
plex Fourier-Bessel structure factors (Klug, Crick & 
Wyckoff, 1958) given by 

Gnt(R) -- )-~fjJ,,(2rrRrj)exp[i(-ntpj + 2:rrlzj/c)], (3) 
J 

where the sum is over the atoms that have cylindrical 
polar coordinates (rj, ~oj, zj) and scattering factors 3~, in 
one helix repeat unit, and J,,(.) is the Bessel function of 
the first kind of order n. A non-crystalline oriented fiber 
is made up of many parallel molecules that are randomly 
positioned relative to each other and randomly rotated 
about their axes. The intensity diffracted by such a fiber 
is given by 

2rr 

It(R) : (1/2rr) f IFt(R, ~P)I 2 d~p (4) 
0 

and substitution of (1) and (3) into (4) gives 

It(R) = ~_. }G,,t(R)I 2. (5) 
n 

A polycrystalline fiber is made up of randomly 
positioned and rotated crystallites, within each of which 
there is perfect crystalline order. The diffracted intensity 
is then concentrated at the positions of the cylindrically 
projected reciprocal lattice and is equal to the sum of the 
intensities IFt(R,~P)I 2 at the reciprocal-lattice points with 
the same cylindrical polar radius (Millane, 1988). 

3. Diffraction by an aggregate 

Consider a non-crystalline fiber in which the diffracting 
units are aggregates of N helical molecules, formed as a 
result of specific side-to-side interactions. The molecular 
axis of the jth molecule intersects the z = 0 plane at the 
point with cylindrical polar coordinates (pj,fly), and the 
molecule is rotated about, and shifted along, its local 
helix axis by c~j and ~'j, respectively, relative to a 
reference molecule at the origin. Using (1) and (3) shows 
that the complex amplitude diffracted by the aggregate is 
given by 

Ft(R, ~/) = ~ ~ G,,t(R)exp[in(~/ - uj + 7r/2)] 
j n 

× exp[i27rRpj cos(~ - flj)] exp(i2~r~Jc), (6) 

where the Gnt(R) are the Fourier-Bessel structure factors 
for the reference molecule. Substituting (6) and (4), 
making some trigonometric simplifications and using the 
integral form for Bessel functions, one finds that the 
intensity diffracted by such a fiber is given by 

I,(R) = y]. y]~ ~_, ~ Gmt(R)G*t(R)J,,_m(2rrRpjk) 
j k m n 

× exp{i[(m - n)fljk -- motj -F rlotk -F 27rl(jk/c]}. 
(7) 

In this equation, the sums over j and k are over the N 
molecules, the sums over m and n are over the solutions 
to the helix selection rule (2), * denotes the complex 
conjugate, Pjk is the length of the vector joining the 
points (pj, flj) and (Pk, ilk), fljk is the angle between this 
vector and the ~0 = 0 axis, ~jj = 0 and ~'jk = ~ ' j -  ~',. 
Equation (7) is then a succinct form of the required 
result. The advantage of (7) over a calculation directly 
from the aggregate structure is that the Grit(R) are 
calculated from a single helix repeat unit of a single 
molecule, rather than from one c repeat of the whole 
aggregate (since the aggregate generally has no helix 
symmetry). Furthermore, the selection rule, and the 
resulting computational savings, do not apply to diffrac- 
tion by the aggregate itself. The computational advan- 
tages of (7) are examined more quantitatively below. 

Considerable insight into (7), as well as a reduction in 
the effort required to compute it, can be obtained by 
separating various terms, and noting that P j k -  Pkj, 
flj~ = fij,j + Jr, g': = -~',j and J_,,(x) = ( -  1)nJn(x), 
which, after some manipulation, shows that 

It(R) = N ~ IGnt(R)l 2 + 2 ~ IG,t(R)I 2 ~ ~ Jo(27rgpjj,) 
n n j k > j  

x cos(-naj~ + 27rl¢jk/c) 

+ 2y]~ ~_, ~-'_,y~Jm_,,(2rrRpj,)~t{Gmt(R)G*t(R ) 
m n > m  j k > j  

× exp[i(m - n)~jk] 

x (exp[i(-mctt + nctj - 2rrl¢jk/c)] 

+ (--1) m-n exp[i(--motj + nott + 2rrl¢jk/c)])} (8) 
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where ~t{.} denotes the real part and ajk = 0tj - 0tk. Note 
that, although the G,,t(R) have been defined here, using 
(3), in terms of an atomic model of the molecule, they 
can be defined for any (for example, low-resolution) 
model of a helical molecule, so that (7) and (8) can be 
used for any such model. 

In (8), the first term represents the intensity diffracted 
by a non-crystalline fiber made up of independent 
molecules and the remaining two terms (multiple 
summations) are due to interference effects resulting 
from the specific geometric relationships between the 
molecules in an aggregate. The first two terms 
correspond to an expression derived by Fraser, MacRae 
& Miller (1964) for the case in which only a single 
Bessel term n contributes on each layer line. In most 
cases, however, multiple Bessel terms contribute on each 
layer line and the third term in (8) must be included. If 
there are many (in practice, not very many) molecules in 
the aggregate and there are no special relationships 
between them (i.e. the pj, fly, otj, (j are random), then the 
terms in the second and third summations in (8) tend to 
average to zero and only the first term remains. This 
corresponds to a non-crystalline fiber and (8) reduces to 
(5). If the aggregate is a crystallite, then the terms in (8) 
combine to form an interference function that samples 
the molecular transform at the cylindrically projected 
reciprocal-lattice points. If there are few molecules in the 
aggregate, then the effect of the second and third terms is 
to modulate the intensity that would be diffracted by a 
non-crystalline fiber of independent molecules. 

In the above analysis, each molecule in the aggregate 
is assumed to be pointing in the same direction. It is not 
uncommon, however, for biopolymer aggregates to 
contain molecules that are pointing in both directions, 
i.e. to contain both 'up' and 'down' molecules. For 
example, the sickle-cell hemoglobin macrofibers contain 
up and down dimers, each dimer being made up of side- 
by-side parallel molecules (Potel, Wellems, Vassar, Deer 
& Josephs, 1984). The above analysis is therefore 
extended to accommodate aggregates containing both 
up and down molecules. Consider an aggregate of N 
molecules, some of which are up-pointing and the 
remainder down-pointing. The Fourier-Bessel structure 
factors and the diffracted complex amplitude for a 
reference up molecule are given by (3) and (1), 
respectively. The reference down molecule is defined 
as the reference up molecule rotated by 180 ° about the x 
axis. The Fourier-Bessel structures of the reference down 
molecule are then G:t(R ) and the diffracted amplitude is 

F°(R, ~) = ~_, G:t(R)exp[inOp + :r/2)]. (9) 
n 

An aggregate containing both up and down molecules 
can be generated by applying appropriate rotations and 
translations to these reference up and down molecules. 
Because of the complex conjugate in (9), the expression 
for the intensity diffracted by the fiber cannot be 

factorized as simply as for the case when all the 
molecules are pointing in the same direction. It is 
convenient to treat the aggregate as a set of up molecules 
and a set of down molecules. Calculating the complex 
amplitudes due to each set, adding, and performing the 
angular average (4), one obtains the intensity diffracted 
by the fiber as 

It(R) -- I~(R) + ID(R ) + I~D(R), (lO) 

where Iy(R) and Ii°(R) are the cylindrically averaged 
intensities diffracted by the set of up and the set of down 
molecules, respectively. ItV(R) is given by (7) [or (8)] and 
I~(R) is given by (7) [or (8)] with Gnt(R) replaced by 
G*,,t(R ). The term IV°(R) represents the interference 
effects between the up and down molecules and is given 
by 

fr°(R) = 2 ~ ~_~ ~ y~J._m(27rRrjk) ~ { Gmt(R) G.t(R ) 
j k m n 

× exp (i[(m - n)~jk - motj + not k + 2Jrl(jk/C]) } 

(11) 
where the sums overj and k are over only the up and only 
the down molecules, respectively. Use of (10) and (11) 
offers similar computational savings as described above. 

It is informative to examine the computational cost 
involved in evaluating (7) [or (8)] compared to a direct 
calculation. As a result of the selection rule and the 
behavior of Bessel functions, the number of Fourier- 
Bessel structure factors required at a particular resolution 
on a particular layer line is approximately proportional to 
the radius of the molecule and inversely proportional to 
the helix symmetry u (Makowski, 1982; Millane, 1992). 
The number of terms required to calculate each Fourier- 
Bessel structure factor is proportional to the number of 
atoms, p say, in the helical repeat unit. If the aggregate is 
treated as a single unit, it has one-fold symmetry, Nup 
atoms in the repeat unit, and a radius of order N 1/2 
relative to the radius of a single molecule. The 
computational cost is therefore of order N3/2up. From 
(7), the number of Fourier-Bessel structure factors 
required is reduced by a factor u, and each is calculated 
using only p atoms. However, the summations over j and 
k give an additional order N 2 terms associated with each 
Fourier-Bessel structure factor so that the overall 
computational cost is of order N2p/u. Expression (7) is 
therefore more efficient than the direct calculation by a 
factor of order u2/N 1/2. For high helix symmetry, this 
can be quite significant. For example, for an aggregate of 
ten molecules each with tenfold helix symmetry, use of 
(7) would reduce the computation required by a factor of 
about 30. 

4. Implications 

Aside from the computational advantages afforded by the 
use of (8), this equation can also be used to examine the 
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effects of aggregation on fiber diffraction patterns. Two 
aspects are examined here. The first is to assess the effect 
of the second and third multiple summations in (8) 
relative to the first term. There are a number of practical 
implications of this. If these additional terms are small 
relative to the first, then the fact that the molecules form 
aggregates may not be apparent in the diffraction data. 
This would be an advantage if one wishes to deter- 
mine only the structure of a single molecule from the 
diffraction data, since the effects of aggregation would 
not distort the analysis. However, it woqJd be a 
disadvantage if one is interested in if, and how, the 
molecules aggregate, because the data containing this 
information may be below the noise level. Also, since the 
transform of a single helical molecule is zero on the 
meridian of all layer lines except those for which l -- mu 
where m is an integer, the helix symmetry of a molecule 
is usually determined from a fiber diffraction pattern by 
inspection of the systematic absences along the meridian. 
Certain types of aggregation can affect the relationship 
between the helix symmetry and the pattern of 
meridional reflections and thus the determination of the 
helix symmetry of the molecules. These aspects are 
explored here by calculating diffraction patterns for 
aggregates (dimers) made up of two molecules. For a 
dimer, we can set Pl =/~1 = ix1 = (1 =/~2 = 0 and use 
the convention P2 = p, a2 = ix, (2 = (. In this case, (8) 
reduces to 

It(R) = 2 ~_, IG,t(R)I2[1 + Jo(2rrRp)cos(not - 2rrl(/c)] 
n 

+ 2 ~ ~ Jm_n(2rrRp)Oi{aml(R)a*l(R ) 
rtl tt > rtl 

x (exp[ i ( -ma  -t- 2]rl(/c)] 

+ ( - 1 )  m-" exp[i(nct - 27r1~/c)])}. (12) 

Example diffraction patterns are calculated using (12) 
and using the asymmelric unit of ,:-carrageenan (Millane, 
Chandrasekaran, Arnott & Dea, 1988) as the helix repeat 
unit. The radius of the molecules generated is ca 7.5 .~. 

The intensities diffracted by dimers containing 
molecules with 21 and 51 helix symmetry are shown as 
the solid lines in Fig. 1 and can be compared with the 
diffraction from single molecules (broken lines). The 
effect of the aggregation is to modulate the amplitude 
diffracted by a single molecule. The main differences 
between the two are at low resolution, where the 
diffraction reflects the overall size of the dimer compared 
to that of the single molecule. Elsewhere, particularly at 
higher resolution, the differences are rather small. The 
effects tend to be more significant for lower than for 
higher helix symmetry. The relative r.m.s, difference 
between the amplitudes diffracted by, the dimer and by a 
single molecule, between 20 and 3 A resolution, is only 
about 10% for the examples shown in Fig. 1. In these 
examples, the formation of an aggregate might be 
detectable in the diffraction pattern from the 21 molecule, 

but probably not in the case of the 51 molecule. The 
differences may be more noticeable, however, if there are 
special relationships between the molecules, as is shown 
below. For more than two molecules, the interference 
effects will be even less significant unless there are 
special geometrical relationships between the molecules 
(in which case the modulation would be more struc- 
tured). Overall, these results indicate that aggregation of 
even only a few molecules should not seriously affect 
interpretation of diffraction patterns in terms of the 
structure of a single molecule. 

It is quite common for molecules to aggregate such 
that the axial shift (or 'stagger') is an integral fraction 
of the c repeat. This case is examined here for 'half- 
staggered' dimers, for which ~ = c / 2  and t~ = 0 .  

1 

• I . . . .  I . . . .  

o. 1 oo 0.200 
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0.000 

R ( A  "1 ) 

(a) 

0.300 
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0.000 

m 

0.1 O0 0.200 0.300 

R ( A  "1 ) 
(b) 

Fig. 1. Amplitude diffracted by helical molecules with (a) 21 and (b) 51 
helix symmetry (- - -), and by dimers made up of  two such molecules 
( ). In these simulations, p = 15 ,~ and tz = ( = 0. 
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Equation (12) then reduces to 

It(R) = 2 Y] IG,t(R)I 2 [1 + (-1)tJo(2zrRp)] 
n 

+ 2 Z ~, Jm-n(2zrRP) 8]{Gmt(R)G*nt(R) 
m r l > m  

× (-])t[1 + (--1)m-"]}. (13) 

If the two molecules are co-axial, then p = 0 and (13) 
reduces to 

It(R) = 4 y~ IGnt(R)l 2, 1 even 
" (14) 

= O, l odd. 

This is a familiar case and the layer-line spacing is 
doubled, reflecting the halving of the c repeat of the 

8 

7 

6 

l 5 
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3 ~" 
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1 / 
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o.ooo 
I . . . .  I 

0.100 0.200 

R ( A  I ) 

(a) 

0.300 

Table 1. Apparent helix symmetry (based on the 
distribution of meridional reflections) of co-axial and 
non-co-axial dimers containing u-foM helical molecules 

u Co-axial Non-co-axial 
Odd u 2u 
Even u/2 u 

dimer relative to that of a single molecule. The effect on 
the distribution of meridional intensity is rather easy to 
see. The co-axial dimer can be treated as a single helical 
molecule and the pattem of meridional reflections 
corresponds to the helix symmetry of the dimer. The 
helix symmetry of the co-axial dimer is equal to u if u is 
odd and to u/2 if u is even, where u is the helix symmetry 
of the constituent molecules. 

If the half-staggered dimer is not co-axial, then the c 
repeat and the layer-line spacing are the same as for a 
single molecule. Inspection of (13) shows that (14) then 
applies only if R = 0, i.e. only on the meridian. The 
dimer itself has only onefold helix symmetry (i.e. no 
symmetry). From (14), if u is even, the meridional 
reflections are present on every uth layer line, which 
corresponds to the helix symmetry of the constituent 
molecules. If u is odd, however, then some of the 
meridional reflections are eliminated and the remainder 
are on every 2uth layer line, which corresponds to the 
helix symmetry of neither the constituent molecules nor 
the dimer. This is summarized in Table 1 and is 
illustrated in Fig. 2 for molecules with 41 and 31 helix 
symmetry. Note that in Fig. 2(b) the first meridional 
reflection for the dimer is on the sixth layer line, although 
the constituent molecules have threefold symmetry. 
Hence, in such cases, one has to be careful when 
interpreting the pattern of meridional reflections in terms 
of the helix symmetry of the molecules. 

7 

6 

5 

1 4 

3 

0 . . . .  I . . . .  I . . . .  

0.000 0.100 0.200 0.300 

R ( A  1 ) 

(b) 

Fig. 2. Ampl i tude diffracted by helical molecules wi th (a) 41 and (b) 31 
hel ix  symmetry (- - -), and by non-co-axial half-staggered dimers 
made up of  two such molecules wi th p = 15 .~, ( ). 

5. Concluding  remarks  

An expression has been derived for the intensity 
diffracted by a non-crystalline fiber made up of 
aggregates of identical parallel (or antiparallel) helical 
molecules. This expression allows the effects of 
aggregation to be evaluated and leads to computational 
advantages compared to a calculation directly from the 
aggregate structure. Example calculations show that the 
effects of aggregation on fiber diffraction patterns are 
often rather small, which has implications for structure 
determination. Aggregates in which the molecules are 
non-co-axial, but staggered in a particular way, can lead 
to unexpected relationships between the helix symmetry 
and the distribution of meridional reflections. 
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A b s t r a c t  

Starting from a microscope model of the intermolecular 
potential, a unified description is presented of the Bragg 
scattering law in the orientationally disordered and in the 
ordered phase of solid C6o. The orientational structure 
factor is expanded in terms of symmetry-adapted surface 
harmonics. The expansion coefficients are calculated 
from theory and compared with experiment. Their 
temperature evolution is studied in the disordered phase 
at the 260 K transitions and in the ordered phase. In the 
ordered phase, new results from high-resolution neutron 
powder diffraction are given. In the disordered phase, 
space group Fm3m,  the reflections have A~g symmetry; in 
the ordered phase, space group Pa3, reflections of T2g 
symmetry appear and in addition the A lg reflections are 
renormalized. The orientational density distribution is 
calculated. The effective crystal-field potential is con- 
structed, its temperature evolution in the ordered phase is 
studied and related to the occurrence of an orientational 
glass. 
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I. I n t r o d u c t i o n  

C60-fullerite is a molecular crystal (Kr~itschmer, Lamb, 
Fostiropoulos & Huffman, 1990). At room temperature, 
the space group is Fm3m (Fleming et al., 1991) and the 
molecules are orientationally disordered. At a transition 
temperature T~ _~ 260 K, the crystal undergoes a phase 
change (Dworkin et al., 1991; Heiney et al., 1991 a) to a 
Pa3 structure (Sachidanandam & Harris, 1991; Heiney et 
al., 1991b; David et al., 1991). The molecules are 
orientationally ordered on four different sublattices 
(Harris & Sachidanandam, 1992). Neutron powder 
diffraction (David et al., 1991) and single-crystal X-ray 
studies (Liu, Lu, Kappes & Ibers, 1991; Biirgi et al., 
1992) of the low-temperature ordered structure have 
revealed the packing configuration of the C6o molecules. 
In an optimized ordering scheme, electron-rich double 
bonds that fuse the hexagons on the C6o molecule face 
pentagons of adjacent C60 units. This idea has been 
implemented in molecular dynamics calculations (Sprik, 
Cheng & Klein, 1992). A theoretical description of the 
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